37 research outputs found

    Lipidomic Analysis of Extracellular Vesicles from the Pathogenic Phase of Paracoccidioides brasiliensis

    Get PDF
    Background: Fungal extracellular vesicles are able to cross the cell wall and transport molecules that help in nutrient acquisition, cell defense, and modulation of the host defense machinery.Methodology/Principal Findings: Here we present a detailed lipidomic analysis of extracellular vesicles released by Paracoccidioides brasiliensis at the yeast pathogenic phase. We compared data of two representative isolates, Pb3 and Pb18, which have distinct virulence profiles and phylogenetic background. Vesicle lipids were fractionated into different classes and analyzed by either electrospray ionization- or gas chromatography-mass spectrometry. We found two species of monohexosylceramide and 33 phospholipid species, including phosphatidylcholine, phosphatidylethanolamine, phosphatidic acid, phosphatidylserine, phosphatidylinositol, and phosphatidylglycerol. Among the phospholipid-bound fatty acids in extracellular vesicles, C181 predominated in Pb3, whereas C18:2 prevailed in Pb18. the prevalent sterol in Pb3 and Pb18 vesicles was brassicasterol, followed by ergosterol and lanosterol. Inter-isolate differences in sterol composition were observed, and also between extracellular vesicles and whole cells.Conclusions/Significance: the extensive lipidomic analysis of extracellular vesicles from two P. brasiliensis isolates will help to understand the composition of these fungal components/organelles and will hopefully be useful to study their biogenesis and role in host-pathogen interactions.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)National Institutes of Health (NIH)Universidade Federal de São Paulo, UNIFESP, Dept Microbiol Imunol & Parasitol, São Paulo, BrazilUniv Texas El Paso, Dept Biol Sci, Border Biomed Res Ctr, El Paso, TX 79968 USAUniversidade Federal de São Paulo, UNIFESP, Dept Microbiol Imunol & Parasitol, São Paulo, BrazilFAPESP: 06/05095-6FAPESP: 07/04757-8FAPESP: 07/59768-4CNPq: 301666/2010-5National Institutes of Health (NIH): 5G12RR008124-16A1National Institutes of Health (NIH): 5G12RR008124-16A1S1National Institutes of Health (NIH): G12MD007592Web of Scienc

    Molecular and Electrophysiological Characterization of a Novel Cation Channel of Trypanosoma cruzi

    Get PDF
    We report the identification, functional expression, purification, reconstitution and electrophysiological characterization of a novel cation channel (TcCat) from Trypanosoma cruzi, the etiologic agent of Chagas disease. This channel is potassium permeable and shows inward rectification in the presence of magnesium. Western blot analyses with specific antibodies indicated that the protein is expressed in the three main life cycle stages of the parasite. Surprisingly, the parasites have the unprecedented ability to rapidly change the localization of the channel when they are exposed to different environmental stresses. TcCat rapidly translocates to the tip of the flagellum when trypomastigotes are submitted to acidic pH, to the plasma membrane when epimastigotes are submitted to hyperosmotic stress, and to the cell surface when amastigotes are released to the extracellular medium. Pharmacological block of TcCat activity also resulted in alterations in the trypomastigotes ability to respond to hyperosmotic stress. We also demonstrate the feasibility of purifying and reconstituting a functional ion channel from T. cruzi after recombinant expression in bacteria. The peculiar characteristics of TcCat could be important for the development of specific inhibitors with therapeutic potential against trypanosomes

    Challenges and limitations for the systematic collection of cycling data from bike sensors

    No full text
    Information and Communication Technology is increasingly recognised as a key element for the ability of cycling mobility initiatives to create real, profound, incremental and measurable impact. Even though previous work has extensively explored many applications of smart cycling data, the first challenge is to actually produce consistent cycling data in a systematic way. In this research, we explore the range of sensors which could be more relevant to integrate into urban bicycles to support the systematic collection of data about cycle routes. To gain a deeper insight into the real-world challenges of systematic cycle-based sensing, we conducted an experimental data collection. We equipped a bicycle with a diverse set of low-cost sensors, and we collected data in a pre-defined route, in which it was possible to experience very diverse environmental circumstances regarding road surface or the level of surrounding traffic. The results highlight some of the practical challenges that can be faced by systematic sensing for urban cycling, suggesting that not all sensors might be appropriate for this type of large-scale deployment on bicycles. The main contribution is a set of design implications, which should help to inform the design of novel sensing systems for bicycles.This work has been supported by national funds through FCT, Fundação para a Ciência e Tecnologia, within the Project Scope: UID/CEC/00319/2019, and also by the European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project nº 039334; Funding Reference: POCI-01-0247-FEDER-039334]. Development of the Arduino code was made by André Torrinha, Marcelo Alves, Pedro Lobo and Rui Almeida as part of a Masters’ Project
    corecore